
NASA TECHNICAL 

*o 
d 
*o 

P 
n 
z c 

NOTE N A S A  TN D-4646 
/ - .- 

GRAVITATIONAL EXPERIMENTS 
WITH A COLLISIONLESS 
TWO-DIMENSIONAL COMPUTER MODEL 

Langley Research Center 
Langley Station, Hampton, 

NATIONAL AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  W A S H I N G T O N ,  D. C. J U L Y  1968 ,* 



TECH LIBRARY KAFB. NM 

-_ .. 
0131320 

GRAVITATIONAL E X P E R I M E N T S  WITH A COLLISIONLESS 

TWO-DIMENSIONAL C O M P U T E R  MODE L 

By F r a n k  Hohl a n d  Stephen K. Park 

Lang ley  R e s e a r c h  C e n t e r  
Lang ley  Station, Hampton,  Va. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
~. . 

~~ 

For sale by the Clearinghouse for Federal  Scientific and Technical  Information 
Springfield, Virginia 22151 - CFSTI price $3.00 



GRAVITATIONAL EXPERIMENTS WITH A COLLISIONLESS 

TWO-DIMENSIONAL COMPUTER MODEL 

By Frank Hohl and Stephen K. Park 
Langley Research Center 

SUMMARY 

A two-dimensional model is used to  perform computer experiments for a collision- 
less self-gravitating system. 
equation and the system is advanced stepwise in time. 
performed for systems with an initially uniform distribution over a circular region in 
x,y space, zero thermal velocity, and various values of initial solid-body rotation. 
t o  4000 stars were used in the calculations. 

The gravitational field is obtained by solving the Poisson 
Computer simulations have been 

Up 

INTRODUCTION 

Actual stellar systems, such as galaxies, contain about 1011 s t a r s  with a sufficiently 
Stel- 

In order 
large average separation so that binary encounters between s t a r s  can be neglected. 
lar systems can therefore be described by the collisionless Boltzmann equation. 
to  simulate the evolution of such stellar systems on a computer, the motion of at least 
several  thousand masses  or  stars should be followed. Hohl and Feix (refs. 1 and 2) and 
Lecar and Cohen (ref. 3) used one-dimensional sheet models to study the evolution of self- 
gravitating systems. A similar model where the motion of a large number of concentric 
spherical mass  shells is followed has been used by H&on (refs. 4 and 5). Recently, 
Hockney" (ref. 6) and Hohl (refs. 7 and 8) introduced a two-dimensional model where the 
s t a r s  are represented by infinitely long mass  rods. In the present report  the results of 
some simple experiments with the two-dimensional model are given. The calculations 
show that filamentary and other irregular structures similar to those of some actual 
stellar systems can be obtained by purely gravitational effects. 

SYMBOLS 

ak variable defined by equation (3) 

D impact parameter 
- .  

*The resul ts  presented in the present report  and in reference 6 are similar and they 
The methods used in were obtained independently by the present authors and by Hockney. 

the numerical calculation are different. 
simpler to use than the Fourier method used by Hockney. 

The present method is more general and much 
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gravitational constant 

gravitational field, -Vcp 

summation index 

mass per unit length 

star density 

number of stars in system 

potential energy 

magnitude of radius vector 

radius vectors defining position 

real  part  

time 

kinetic energy 

total energy 

velocity 

transverse velocity 

positions along X- and Y-axes 

complex position, x + iy 

overrelaxation parameter 

variable defined by equation (15) 

mass  density 

relaxation time 

equilibrium rotation period 

gravitational potential 



w frequency of rotation 

equilibrium frequency of rotation wg 

Subscripts: 

j, k, n, m summation indexes 

max maximum 

min minimum 

r radial 

X, Y x- and y-component 

e azimuthal 

Arrows over symbols denote vectors. < > denotes expectation values. 

DESCRIPTION OF MODEL 

The model consists of a large number of rods of equal mass  per unit length and the 
rods a r e  of infinite extent in the z-direction. 
the action of their mutual gravitational attraction. The system of mass  rods is advanced 
in time in the following manner. 
the gravitational potential q(x, y) by numerically solving the Poisson equation. Second, 
the gravitational field at the position of the particles is computed from the potential 
q(x,y). Third, Newton's laws are used to advance the motion of all the mass  rods for a 
small  time step 6t. These three steps represent one cycle and they are repeated until 
the desired evolution of the system is achieved. 

These rods move in the x,y plane under 

First, the distribution of mass  p(x,y) is used to obtain 

The crucial point in the computations is the solution of the Poisson equation. It is 

If the system is advanced for a small time step 6t, the mass  distribution p(x,y) 
desirable that the time required for this process be only a small fraction of the cycle 
time. 
will not change very much. The change in the gravitational potential will then also be 
very small. 
iteration method which uses the potential from the previous cycle as an initial guess will 
converge very rapidly. It was found that 5 to 7 iterations per cycle gave satisfactory 
results. 

Thus, the solution of the finite difference form of the Poisson equation by an 

To solve the Poisson equation, the boundary conditions around the rectangular mesh 
used in solving the finite difference form of the Poisson equation a r e  required. 
potential at an arbitrary boundary point z = x + iy can be written as 

The 
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where Zn = Xn + iyn is the position of a rod of mass  m, G is the gravitational con- 
stant, and N is the number of particles in the system. 

Equation ( la )  can be written as 

r 1 

Since - c 1, the potential of the boundary points can be approximated by 121 

cp(x,y) = 2GmN log, IzI - 2Gm RE 

where 

N 

ak = 1 (Zn)k 
n=l 

15 

k=l 

and the series expansion for log, (1 - 2) has been truncated after 15 terms. The 

accuracy of equation (2) has  been checked by direct summation of the logelz - 
potential and was found to agree to better than 0.1 percent. Equation (2) for the poten- 
tial on the boundaries has a lso been used by Hockney (ref. 6). Equation (la) can also 
be used to  obtain the potential of an arbi t rary point. However, the time required for 
such a method is too large. Therefore, the potential is obtained by solving the Poisson 
equation. 

ZnI 

The Poisson equation 

- a2v a2q 4nGp(x,y) 
&2 +q= 

(3) 

is solved by using the standard five-point difference equation (ref. 9) 
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where Ax = Ay = 1. 
sented by pn,m. 
the Control Data 6600 computer system in the form 

The mass  per unit length of all the rods in the cell  n,m is repre-  
This set of simultaneous equations is solved by an iteration method on 

To save computer storage and increase the convergence rate, the new values of qr+l 
which have already been determined a r e  used in the right-hand side of equation (6). 
superscript r refers to  the r th  iteration and the parameter y is adjusted to give the 
maximum rate  of convergence. 

The 

The differential equations of motion for the stars are 

0 

dRj 0 

-= dt 

where g is the position of a s ta r  and E is the gravitational field. The evolution in 
time of the particle trajectories is given by the finite-difference approximation 

Ej(t + 6t)  = Iij(t) + Pj(t)Bt + $ E(,Ej,t) 

Vj(t + 6t) = Vj(t) + E(Ej,t)6t + 2 6t2  --& d E  

where - dE w a s  approximated by the backward difference dt 

d E -  1[- - 4  - - - K(gj,t) - K(Rj,t - dt 6t 

Equations which were found to  be nearly as accurate as equations (9) and (10) but 
which require fewer computer operations a r e  (from ref. 10) 
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d E  The term - in equation (.lo) was introduced to remove a computational instability. dt 
Similarly, the use of the new velocity in equation (13) removes an unconditional computa- 
tional instability. 

Equations (12) and (13) can be expressed in a simpler form by introducing the 
quantity 

The equations can then be written in the simplified form 

and 

Equations (15) and (16) were also used by Hockney (ref. 6) and they require the least 
number of computer operations. However, if it is desired to display the evolution of the 
system in velocity space o r  to compute the kinetic energy of the system, the equation 

must be evaluated. It may then be more desirable to  use equations (12) and (13). All 
three se t s  of equations were used and all gave similar results. 

The kinetic energy of the system is 

N 
T = i m  2 Vj2 

j =1 

and the potential energy is 
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where the summation goes to  N, the number of stars in the system. 
the system U remains constant and is 

The total energy of 

U = T + P  (20) 

For the calculations presented here, the Poisson equation was solved on a 51 by 
51 mesh. During the evolution of the system, the potential at several  mesh points was 
computed by summing directly the contribution to the potential from each mass  rod. 
These potentials agreed with those obtained from a solution of the Poisson equation to  
within 0.1 percent. 

Another check on the method of solution was made by comparing the evolution of 
two systems with identical initial conditions where the mesh size used in the solution of 
the Poisson equation was 51 by 51 for one system and 101 by 101 for the other. 
resulting evolution of the two systems w a s  nearly identical. 
2000-particle system with a 51 by 51 mesh and with 7 iterations per cycle is 1 second on 
the Control Data 6600 computer system at  the Langley Research Center. This time 
includes such operations as the checking of the potential, the calculation of energy and 
angular momentum, and writing the positions and velocities of all stars on tape. 

The 
The cycle time for a 

The relaxation time (ref. 11) for the two-dimensional model is of interest to deter-  
Con- mine the number of rotations for  which the system can be treated as collisionless. 

sider an encounter between a rod of mass  m per unit length and velocity V with a 
stationary rod of mass  M per unit length. If D is the distance of closest approach 
(impact parameter), the t ransverse force acting on the moving rod during a t ime 
can be approximated as 2GmM/D. (See ref. 12.) The moving s tar  has therefore acquired 
a transverse velocity 

2D/V 

For a star interacting with a system containing many stars, the effect of many individual 
encounters must be summed. The number of encounters in a time t with impact param- 
eter between D and D + dD is tVn dD where n is the density of stars in the sys- 
tem. The expectation value of VL2 is then given by 
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16tnG2M2 dD 
V 

2 2 D m a x - D m i n  
V 

= 16tnG M 

since, in general, Dm, >> Dmin where Dmax = Ax. The relaxation time T~ is 
defined as the time required for ( V i 9  to be of the same order of magnitude as V2. 
Thus, for  (Vi? = V2, t = T~ and 

(23) - v3 
2 2  2 8G m nDmax 

Tc - 

where M = m and Dm,, is taken to be equal to  the dimension of the system, which 
for systems near equilibrium is the Jeans or  Debye length (ref. 2). 

The gravitational field inside a system with a uniform circular distribution in coor- 
dinate space is 

K = 2aGpR 

Balancing the gravitational force toward the center of the system by the centrifugal force 
W ~ R  requires a frequency 

The rotational period for such a system then becomes 

2a 7g = - 
I/anGp 

For the systems investigated, the ratio of the relaxation time 7c to the rotation 
period Tg is 
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Therefore, only for a time less than about 4 rotations can the system be considered as 
collisionless. 
requires a system containing about 10 000 stars. 

To keep the effects of collisions negligible for the first 10 rotations 

For the 2000-particle systems investigated, the total energy was conserved to 
within 2 percent. 
less than 0.5 percent. 

The e r r o r  in the energy for systems containing 4000 particles was 

RESULTS AND DISCUSSION 

The computer experiments were performed for systems which have an initially 
uniform circular distribution in x,y space and zero thermal velocity. The evolution of 
such systems is then studied for various values of initial solid-body rotation. The initial 
conditions a r e  obtained by using a random-number generator which gives a nearly uni- 
form distribution over a circular region of the x,y plane. The normalizations 47rG = 1 
and m = 1 were used for all the calculations. 

First ,  the results for the case where the system is in equilibrium a r e  presented. 
For this case the initial frequency of rotation w equals wg, the frequency required 
such that the centrifugal force balances the gravitational attraction towards the center of 
the system. Thus w = wg, where 

Figure 1 shows the evolution of a 2000-particle system in x,y coordinate space. The 
time t has been normalized to the period of rotation Tg = k. The time step used in 

T wg the calculations is 6t = L. Lamb (ref. 13) has given the result  that an infinitely long 200 
circular cylinder of uniform density may rotate in relative equilibrium about i ts  longi- 
tudinal axis with an angular velocity given by w2 = 7rGp. One would therefore expect the 
initial distribution shown in figure 1 to be unstable. Thus, at t = 0 . 5 ~ ~ ,  there appears 
a fourth harmonic perturbation around the periphery of the system. Later the perturba- 
tion goes to an egg shape and it finally disappears and leaves the system in a steady 
state. At t = 0 . 7 5 ~ ~  and t = l .OOTg, there is an indication of the appearance of spiral  
a rms;  however, i t  appears that collisional effects suppress this tendency. The evolution 
of the corresponding velocity distribution is shown in figure 2. 
change in the velocity distribution as the system evolves in time. 
velocity distribution of the system after the initial solid-body rotation has been sub- 
tracted. The radial velocity Vr is plotted against V, - r w  where Ve is the azi- 
muthal velocity and r is the radius from the center of the system to a star. Initially, 
the thermal (or random) velocity of all mass  rods is zero. Because of the small 

There is almost no 
Figure 3 shows the 

g 
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perturbation caused by the random initial position of the stars, a small  thermal velocity 
builds up and the system expands in Vr - ( v ~  - rwg)  space. After a time t = 2 . 0 7 ~ ,  
there is little further change in the velocity distribution. The increase in the thermal 
velocity causes the system to  stabilize. 

These calculations with w = wg were repeated fo r  a 4000-particle system. The 
results a r e  shown in figure 4. It can be seen that the deviation from a circular distribu- 
tion is even smaller now than for the 2000-particle system. 

The results for the case of zero initial rotation, w = 0, a r e  presented next. Fig- 
ure  5 shows the evolution of the system in coordinate space. After an initial implosion, 
the system expands and presents some highly filamentary structure. At t = 0 . 5 3 ~ ~ ,  sev- 
e ra l  clusters of stars have condensed. 
cluster remains and the system takes on an appearance reminiscent of an elliptical gal- 
axy. The corresponding evolution in velocity space is shown in figure 6. Initially, all 
stars have zero velocity. As the system collapses under the gravitational forces, the 
velocity of the s t a r s  increases. The system then expands rapidly in velocity space and 
shows filamentary structure similar to that appearing in coordinate space. A motion 
picture was prepared which shows the evolution of the system. One of the striking fea- 
tures  that can be observed in the motion picture is the appearance of s t reamers  in veloc- 
ity space. Chains of stars move out of the main body of the system and then curve back 
again. After several pulsations, the pressure due to the increased temperature builds 
up and the system approaches an equilibrium state. 

However, at a later time only a large central 

For a system with an initial rotation equal to half that required to balance gravita- 
tion, the system again contracts initially and then expands. 
figure "(a). At time t = 0.53 T ~ ,  the system has developed an irregular structure which, 
however, disappears again and after only a few rotations the system approaches an equi- 
librium configuration similar to that of an elliptical galaxy. 
sponding evolution in velocity space. 

The resul ts  a r e  shown in 

Figure 7(b) shows the corre-  

In figure 8(a) the resul ts  a r e  shown for a system with an initial rotation equal to 
1 . 3 ~ ~ .  The general behavior is very similar to that of the previous case with w = 0 . 5 0 ~ .  
At the time t = 0 . 7 5 ~ ~  the system shows a structure similar to that of the Crab Nebula. 
The evolution in velocity space for this system is shown in figure 8(b). 

The time development of the total kinetic energy of the 2000-particle systems inves- 
tigated is shown in figure 9. For 
the other cases  the initially large oscillations in the kinetic energy are quickly damped 
as the systems approach ah equilibrium state. The rapid damping of the oscillations in 
the kinetic energy is another indication that collisional effects a r e  important even after 
only 3 to 4 rotations. 

Only small oscillations occur for the balanced case. 
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CONCLUDING REMARKS 

The two-dimensional model used to study the evolution of self -gravitating systems 
indicates that a variety of filamentary and other structures can be produced by purely 
gravitational effects. Some of the systems investigated showed a structure similar to 
that of the Crab Nebula. 

The evolution of the balanced cylinder showed that there  was a tendency for spiral  
It appears structure to appear and also a tendency for the cylinder to become unstable. 

that both of these effects are quickly suppressed by collisional effects. Thus, systems 
with more stars should be used to increase the ratio of the relaxation time to the rota- 
tional period. For example, to keep the system collisionless for 10 rotations requires 
a system containing 10 000 mass  rods. 

The method used for the calculations in this report is general and requires no mod- 
ification either to increase the number of stars in the system or to increase the number 
of mesh points used in the numerical solution of the Poisson equation. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., April 16, 1968, 
129-02-01-01-23. 
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sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
application?. Publications include Tech Briefs, 
Ttchnology Utilization Reports and Notes, 
and Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546 


